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The theories of Dolan and Edwards [Proc. R. Soc. London Ser. A 337, 509 (1974)] and Eisenriegler
et al. [J. Chem. Phys. 77, 6296 (1982)] for Gaussian chains confined between parallel plates and to a
half-space are generalized to chains having arbitrary stiffness. The generalized theory exploits a recently
discovered relation between semiflexible polymers and Euclidean-type Dirac fermions in which “flexi-
ble” and “stiff” polymers correspond to the nonrelativistic (massive) and relativistic (massless) limits of
the Dirac propagator, respectively. We show that half-space and parallel-plate problems are interrelated
and this allows for a simplified and unified treatment of confined semiflexible polymers. The properties
of confined semiflexible chains exhibit a complicated dependence on the polymer-surface interaction and
chain stiffness. Results for polymer dimensions and entropic Casimir-like forces between plates are con-
sistent with those obtained previously for flexible chains and corresponding results are obtained for
semiflexible polymers. The new results for the forces between plates, having a semiflexible polymer in
the gap, exhibit qualitative agreement with experimental data on confined chains at nonvanishing con-
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centrations.

PACS number(s): 82.65.Dp, 36.20.—r

I. INTRODUCTION

The statistical mechanics of bulk polymer solutions at
various concentrations is rather well understood [1] for
fully flexible chains with excluded volume interactions.
However, the statistical mechanical description of par-
tially flexible chain solutions is still relatively un-
developed. Recently, we introduced a new formalism
which allows the extension of known results for flexible
polymers to chains having arbitrary stiffness [2-8]. At
the level of an isolated polymer chain, this approach
reproduced known conformational properties of
semiflexible chains and some new basic results were also
obtained, e.g., an exact closed form for the scattering
function S (k) [8] for chains of arbitrary stiffness, etc. At
the level of many chains, the classical results of Onsager
[9] and Flory [10] for nematic order in solutions of rigid
rods were also reproduced using an extension of a formal-
ism applied earlier [11] to flexible polymer solutions.
This approach allows for the treatment of fluctuation
corrections for solutions of chains having arbitrary flexi-
bility and this task will be developed in separate publica-
tions.

There are many physical problems involving polymer
solutions in confined geometries which can be described
by our new formalism. Examples include adsorption of
polymer chains by surfaces [12], polymer stabilization of
colloids [13], study of surface tension changes by poly-
mers at interfaces [14], partitioning of polymers between
the bulk and porous medium [15], shifts in the critical
temperatures of phase separating solutions in confined
geometries [16], etc.

To study the above problems analytically, two comple-
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mentary approaches have been traditionally followed.
One approach involves a continuum theory extension of
bulk results to the case of restricted geometries
[12,17,18], while the other approach employs lattice mod-
el of random walks in the presence of boundary con-
straints [19]. The latter approach is important, for exam-
ple, for the study of polymer-induced entropic *““Casimir-
like” (since they derive from medium fluctuations) forces
between parallel plates and has contributed significantly
to our understanding of polymer colloid stabilization.
For this geometry, Casimir-like forces were first con-
sidered by Meier [20], Cassasa and Tagami [21], and Do-
lan and Edwards [18], based on a continuum model for
flexible polymer chains, and by DiMarzio and Rubin [19]
for lattice random-walk chains. From the standpoint of
the present work, it is notable that the continuum model
calculations have been restricted to infinitely strong
repulsive polymer-surface interactions while the DiMar-
zio and Rubin calculations have not been restricted in
this fashion. Limited results related to semiflexible
chains have been obtained by this approach, however.
The continuum models are sometimes more advanta-
geous because they admit an easy generalization to finite
polymer concentrations, the presence of excluded
volume, etc. [22], while the discrete lattice calculations
are usually limited to chains in the absence of excluded
volume effects [19]. For the half-space problem, the situ-
ation is similar. Following the discrete chain formulation
of Privman and Svrakié¢ [23] and earlier work, Ref. [19],
the fraction of absorbed monomers is readily considered.
The same quantity is much harder to define in the contin-
uum approach (see Fig. 1 and discussion given in Sec.
VII B below). The choice of model is then dependent on
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FIG. 1. Fraction of adsorbed monomers 5, as a function of
an inverse rigidity m [Eq. (7.46)] for polymer chains of different
lengths N (N =10, 25, 50).

the questions under discussion.

Unlike the continuum results of Dolan and Edwards
[18], our calculations are not limited to the infinitely
strong surface repulsion. The present calculations are
simplified by a demonstration that the half-space and the
parallel-plate problems are mathematically interrelated.
This observation allows for an extension of the Dolan and
Edwards theory to the case of arbitrary strengths (attrac-
tion or repulsion) of the polymer-surface interaction and
for an extension of the half-space results of Ref. [17], to
chains of arbitrary flexibility.

This paper is organized as follows. In Sec. II we pro-
vide some auxiliary background material related to
Dirac-type descriptions of semiflexible polymers [2-8].
In Sec. III we reconsider the problems of description of
conformational properties of fully flexible polymers
confined to half space and between the parallel plates and
demonstrate how they are interrelated. In Sec. IV we ex-
tend these results to semiflexible polymers. Section V is
devoted to general discussion related to calculations of
basic single chain properties, while in Sec. VI we provide
explicit calculation of these properties for the case of ful-
ly flexible chains. In Sec. VII we provide detailed calcu-
lations of the same properties for chains having arbitrary
flexibility, while in Sec. VIII we discuss our results in
connection with related problems to be considered in the
future.

II. GENERAL BACKGROUND

The conformational properties of fully flexible poly-
mers in the absence of excluded volume are described
with the help of the moment generating function
Gy(k,N)=exp(—k2IN /2d) where N is the length of po-
lymer chain, / is Kuhn’s step length (! <<N), and d is the
dimensionality of space. This generating function is just
Fourier transform of the Gaussian chain end-to-end dis-
tribution function appropriate for random walks [1].
With the help of Gy(k,N) the moments such as (R?),
etc. of the distribution function are obtained, e.g.,
(R?)=NI. In the case when Kuhn’s length I becomes
comparable with N, the Gaussian distribution function
can no longer be used, and we have to replace G,(k,N)
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by a generating function appropriate for semiflexible
chains. Such a function was determined recently [2-8]
and is given by

Go(k,N)=2 cosh(mEN)+ %sinh( mEN), (2.1
where E2=1—k?/2dm? and the “mass” parameter m is
directly related to the rigidity of polymer chain (more ex-

actly, m <a ~! where a is the persistence length). Appli-
cation of a Laplace transform to Eq. (2.1) converts it into

1 Vd(s+m)
2Vd k2/2+M?
where M2=d(s?*—m?). For further use it is convenient

to rescale the momentum k so that Eq. (2.2) acquires the
form

Go(k,s)= , 2.2)

s+m
K*+st—m?
We would like now to demonstrate directly how Eq. (2.3)

can be obtained with the help of the Euclidean version of
the 4d Dirac propagator Gg. Using Ref. [8] we write

1 -
> Go(k,s)= 2.3)

—i =i K—m
K+m k*+m
where k*=k’>+s?%, K=y"k, being Euclidean-type Dirac
matrices so that {y#,y"}=28*". Now let m —im in Eq.
(2.4), so that we then obtain

Gi(k,s)=

-=Glk,s) , (2.4)

__m
k*+s2—m?’
where we have taken into account that Try#=0 and
Tr(y*)*=—1. Although the right-hand side of Eq. (2.5)
is not exactly the same as that of Eq. (2.3), we shall
demonstrate shortly that both Eq. (2.3) and Eq. (2.5)
could be used for description of semiflexible polymers.
Moreover, they are naturally connected with each other.
Indeed, as discussed in Refs. [3,4], the lattice version of
the Dirac propagator is obtained only if the proper
averaging over the initial states and summation over the
final states of the lattice walks is made (as it is also done
in continuous limit for the Dirac particle [3]). In the con-
tinuous limit the polarization density matrix p is used
[e.g., we can choose p={(I+a,y*) so that Trp=1 and
a, could be assigned to properly account for the orienta-
tion of the initial and final states.] If we choose p in the
form p=%(I+iy4), then multiplying both sides of Eq.
(2.4) by p and taking the trace brings us back to Eq. (2.3)
as required (of course, after replacement m —im, as be-
fore). We would like to note also that in the case of
Kratky-Porod (KP) type chains the above averaging over
initial and final states is also crucially required [3]. Let
G (k,N) be generating function for random walk [i.e.,
G(k,N)=G, or G,], then the mean square end-to-end
distance (R?) can be calculated according to the equa-
tion

TrGy(k,s)= 2.5)

(R?)= —Zd%InG(k,N)]FO . (2.6)

It is easy to check that this prescription produces the
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correct results for Gaussian walks and, hence, by com-
plementarity and continuity, it is expected to produce
correct results in more general cases. Equation (2.6) can
be equivalently rewritten as

26k,
ok

L7NGKks)] iz

L—I

(R?)=—2d

, 2.7

where L ~! is the operation of taking the inverse Laplace
transform. Using Eq. (2.2), we obtain
N 1 _
R)=-————(1—e "), 2.8
(R?) om am (1—e ) (2.8)
which, upon rescaling N—V2N,m=(2V2a )", pro-
duces the well-known KP result

(R?)=a%%(x), (2.9)

where a was already defined, e.g., see Eq. (2.1), and
pX(x)=2[x —1+exp(—x)] with x =N /a. For a <<N we
again obtain the Gaussian result (R?)=2aN so that in
this limit we can make an identification: / =2a. In the
opposite case a = N (i.e., m —0) we obtain the rigid rod
result: (R?)=N2. Let us now use Eq. (2.5) in order to
calculate (R?). By combining Eqs. (2.5) and (2.7) we ob-
tain

N r(mN)
m

(R?)= (2.10)
where L(x) is the Langevin function: /L(x)
=cothx —1/x. Now let d =3 and m =3/2a, then the
last result can be rewritten as

2
(RH=2" r(x), 2.11)

3

where x =3N /2a. For the Langevin function it is known
that £ (x —0)=x /3 which produces { R?) =N? as before
while L(x — 0 )=1, which produces {(R?) =2Na also as
before. Graphical comparison [8] between the right-hand
sides of Egs. (2.9) and (2.11) shows that they practically
coincide for all values of x (except for x =1 where they
slightly differ). In Ref. [8] we have demonstrated that it
is more advantageous to use Eq. (2.5) than (2.2) in the
case where the higher moments, e.g., (R®) etc. are of in-
terest. It is because the Dirac propagator, Eq. (2.5), per-
mits us to obtain a closed form expression for the scatter-
ing function S(k) valid for arbitrary k’s and chain
stiffness @ while the use of Eq. (2.2) produces correct re-
sults for S (k) only in the limit k—O (i.e., at the level of
(R?) calculations). In view of this, we shall use in the
rest of this paper the Dirac propagator, Eq. (2.5), keeping
in mind that the alternative form, Eq. (2.2), could be used
in principle if it is physically necessary.

Because the differences between Egs. (2.2) and (2.6) are
caused by the difference in performing the orientational
averaging over the chain ends, it is appropriate to men-
tion here that the above two forms do not exhaust the ex-
isting possibilities. For example, if we would like to
study the conformational properties of a polymer which
has one of its ends anchored at some surface, then there
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could be some obvious asymmetry with respect to averag-
ing of its ends. The last situation is very common in the
case of nematic liquid crystals confined by surfaces [24].
The formalism which we had already developed [2-8]
can be extended without difficulty to the case of anchor-
ing. To this purpose it is sufficient only to perform the
averaging separately for the beginning and for the end of
the polymer chain (this is achieved most effectively when
the averaging of the discrete analog of the Dirac equation
is considered [3,4] and then the continuous limit is taken).
In the case of a polymer chain confined between two
parallel plates there are several possibilities, e.g., one end
may be fixed while another is free, both ends are fixed on
the same (separate) plate(s), etc. In each case we could, in
principle, treat the beginning and the end of the chain
differently, if necessary.

In the present study we do not want to obscure our re-
sults with the above complications for reasons which will
become obvious upon reading. In the case where geome-
trical constraints are imposed, e.g., half plane, parallel
plates, etc., it is convenient to use an alternative represen-
tation of the propagator G (k,N). We first consider the
simpler case of flexible polymers where the Laplace-
transformed propagator G,(k,s) can be written as

1
kZ+s
where we had adsorbed all unimportant constants by ap-
propriately rescaling k and s. Next, we introduce
“mixed” representation of the same propagator via
- dk eik'x
—o (2m)9 K2 +s
Without loss of generality, consider the one-dimensional
case of Eq. (2.13):

Golk,s)= ) (2.12)

Go(x;s)= [ (2.13)

© ik-x
Go(x;s)= f dk £ (2.14)

—w (2m) (k—iVs )k+iVs)

Using Jordan’s lemma the above integral could be easily
calculated with the result

—Vs x|

Gy(x;s)= (2.15)

1
s ¢
In the case of d dimensions we treat x as the dimension
normal to surface of dimension d —1. This generaliza-
tion involves no additional calculations. Simply we have
to replace s by s —H(ﬁ in Eq. (2.15) where
ki=ki+k3+ -+ +ki_, toobtain Gy(x,k;;s) instead of
Gy(x;s). Consider now the case of the Dirac propagator.
As before, we have

+syo—m
c—: [ dp PY3TSYo ;
@o(x,s)—lf . —_—p2+s2+m2 e'’?*
=I,+I,, (2.16)
where

. o d e 'P*
11=,7,3f_ ap pem

2.17
w 2T p2+s2+m? 2.172)

and
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® (syo—m)e'P*
_, [= dp (svomme®

(2.17b)
-0 27 pl+si+m?

I,

The matrix ¥, is taken to represent the x direction.
Consider now I, in some detail. If x >0, then we ob-
tain

F) © EE eipx

=y, — —_—, 2.18a)
h=rsged _oon pi+s?+m? 218
while if x <0, we get
© ipx
L=y, [~ % ¢ (2.18b)

a —w 27 pz+s2+m2 ’
In compete analogy with the scalar case [e.g., see Eqgs.
(2.13)-(2.15)], we obtain

=dp__e” 1 o

— 2w p*+st+m? 2

where ®=V's?+m? Therefore, using Egs. (2.18a) and
(2.18b), we find

(2.19)

—o|x| .

I, =— %sgn(x)e (2.20)
The case of I, does not require any additional effort so
that we can write the final result without delay:

—olx|
I

Go(x,s)=i[s7+m—y3msgn(x)]e (2.21)
where__we have made replacement: m—im;
©=V's*—m? and ¥ =iy, Extension of the above result
to d dimensions requires, as before, replacement of s? by
s>+k{. The results presented above admit an easy exten-
sion to the cases when geometrical or topological con-
straints are present. Some of these cases will be con-
sidered below.

III. PROPAGATORS
FOR FULLY FLEXIBLE CHAINS
IN THE PRESENCE
OF GEOMETRICAL CONSTRAINTS

In the presence of some external potential V(r) the
equation of “motion” for the distribution function of ful-
ly flexible chains is given by [1]

9 —-LVE+ V(r)

N 2d G(r,r';N|V)=8(N)8(r—r')

(3.1)

so that Gy(k,N) considered in Sec. II is just a Fourier-
transformed version of G (r,r’; N|V =0). It is convenient
to rewrite Eq. (3.1) in the form of integral equation [25]

G(r,r';N|V)=Gy(r—1";N)
N ’” e AT ”"
fo drfdr Go(r—r';N—7)V(r")
XG(r",r';7|V) . (3.2)

The above equation can be further rewritten by taking a
Laplace transform of both sides:

2209

G(r,r';s|V)=Gy(r—r';s)— fdr”GO(r-—r";s)V(r")

XG(r'",r';s|V) . (3.3)

This form is especially useful, as we are going to demon-
strate now. Consider Eq. (3.3) for the case of one dimen-
sion and choose the potential ¥ (r)=§,58(x), so that we
obtain

G(x,x";5)=Gy(x —x';5)—8yG((x;5)G(0,x';s) , (3.4)

where Gy(x —x';s) is given by Eq. (2.15). We have intro-
duced the abbreviation G(x,x’;s)=G(x,x’;s|V). Now
let x =0 in Eq. (3.4), then, by combining Egs. (2.15) and
(3.4), we obtain a closed form representation for
G (0,x';s) given by

G (0,x'55)= ) 3.9
1+8¢G,(0;s)
By combining this result with Eq. (3.4) we obtain
G(x,x";5)=Gy(x -—x’;s)———&—_Go(x,s)Go(x’;s)
1+8,/2V's
(3.6)
or
G(x,x";s)
= 2‘1/; exp(—V's [x —x'|)
—a)+—;‘/—;-exp(—\/; lx|—Vs x| .
(3.7

In arriving at Eq. (3.7) we choose a system of units (e.g.,
I =2d) in such a way that Eq. (2.15) can be used directly.
This can be seen by taking limit §,—0 in Eq. (3.7). The
choice of potential made in Eq. (3.4) corresponds to a
penetrable surface. In contrast, an impenetrable surface
restricts the chain to the half-space regardless of the
strength of polymer-surface interaction. The distinction
between the modeling of these very different types of sur-
faces is discussed in Ref. [26]. The penetrable model
should be applicable to liquid-liquid interface since in this
instance a chain can legitimately ‘“tunnel” through the
interface [27]. The impenetrable surface model is more
appropriate for a liquid-solid interface.

The penetrable surface model can also be formulated
directly in terms of the path integral of the following type
[17]:

G(x,x’;NlV)=fi::,:)xD[x(‘r)]

X

Xexp

_foNdrH[x(T)]' ,

(3.8)

where
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2

dx | 4 5,8(x(7)) .

H[x(n)]= dr

1
2 (3.9)

Laplace transforming Eq. (3.1) (and choosing again
1 =2d) we can obtain an alternative path-integral repre-
sentation of G (x,x';s) given by [17]

I D1, (x)¢,(x" )exp{ —S[8])

G(x,x";s)= , (3.10)
[ Diglexp{ —S[8]}
where
SI61=L [dx 6x) | =L 45 +5500) [gx) . (31D
; e . . .

Both path integrals, Egs. (3.8) and (3.10), are equivalent
when solved [28,29] to representation of G (x,x’;s) given
by Eq. (3.7). The solution given by Eq. (3.7), however, is
not the same as usually discussed in connection with the
impenetrable surface model. In the last case, to solution
given by the right-hand side of Eq. (3.7) another function
is added [30] which represents the nonsingular solution G
of the equation

—g——Vﬁ—FV(r)

3N (3.12)

G(x,x";N)=0.

Following Ref. [30] the solution for G for the impene-
trable surface can be obtained with the help of the al-
ready existing Eq. (3.7), if we replace x’ by —x' in the
right-hand side of Eq. (3.7). Adding this obtained result
for G with G and, in addition, assuming that both x and
x'>0, we obtain finally

\/S ) e»\/}(x +x)

I~ ’

—\/§|x—x'|+
Vs +8

P
G(x,x';s) ——-2‘/5 e

(3.13)

where 8=5,/2 and we have used the same symbol for G
in Eq. (3.1) and here. The last condition (x,x’'>0) was
not stated explicitly in Ref. [30], but it is essential in ar-
riving at the result Eq. (3.13). From the above detailed
derivation of the result, Eq. (3.13), it follows that, in con-
tradistinction with the results of Ref. [17], Eq. (3.13) can-
not be directly obtained from the path integral, Eq. (3.10).
This circumstance may or may not be important, howev-
er, because if in perturbational calculations the diagram-
matic methods are used, then it is always possible to for-
mally replace the propagator given by the right-hand side
of Eq. (3.7) with that given by the right-hand side of Eq.
(3.13) [30]. Under such conditions, the path-integral
method could be considered only as a convenient tool for

J

1

VN 2

G (x,x";N)= lexp
M=—cw

—-11\—,(x —x'—2Md )?

Consider now the following chain of transformations:
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development of the diagrammatic perturbational expan-
sions. The nonperturbative treatments, however, could
be affected by the above discrepancy and this fact was re-
cently noticed in Ref. [31].

Equation (3.13) could be considered from a somewhat
different angle. In the limiting cases §,=0 and §,— +
we obtain, respectively,

G(x,x';s)=—i:{exp(—\/§ |x —x'])

2V's
+exp[—Vs(x +x)]}, (3.14)
G(x,x";s)= e {exp(—\/ﬂx —x'])
—exp[—Vs(x+x)]} . (3.15)

Comparison with the similar problems in quantum
mechanics [32] indicates that Eq. (3.14) could be inter-
preted as a Euclidean-type version of two-particle relative
amplitude for two bosons, while Eq. (3.15) represents the
two-particle relative amplitude for fermions (e.g., see p.
225 of Ref. [32] for the corresponding quantum-
mechanical analogs). Hence the strengths §, of the po-
tential V(x) effectively change the statistics of the prob-
lem from bosonic (§,=0) to fermionic (83—t ). No-
tice that Eq. (3.7) cannot provide the above fermion-
boson transmutation and hence the path integrals, Egs.
(3.8) and (3.10), do not possess this property as well. At
the same time, the limiting cases, Egs. (3.14) and (3.15),
could be obtained with the help of path-integral methods
(e.g., see Ref. [32], Chaps. 6 and 7) and the problem of ex-
tending these results to arbitrary §, naturally arises.

In the present paper we do not need a complete path-
integral solution to the above problem. Instead, we
would like now to demonstrate that the description of
configurational flexible polymers confined between the
parallel plates is closely related to the problem of a poly-
mer in a half-space which was just discussed.

Let d be the distance between two parallel plates. The
end-to-end distribution function for the polymer chain
confined between totally repulsive walls separated by the
distance d was obtained by Dolan and Edwards [18] who,
in turn, used earlier results of Carslaw and Jaeger [33] for
distribution of heat between two parallel plates.

By noticing that the propagator, Eq. (2.15), when writ-
ten in (x, N) space, produces

Go(x,N)=—F——= (3.16)

we rewrite Dolan and Edward’s previous result [Eq. (2) of
Ref. [18] ] using our normalization and notations as

—exp l . (3.17)

—%;(x +x'—2Md)
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V76, (x,x',N)= L i exp —L(x —x'—2Md )’
1’4% N2 = N
_ 1 > 4d X x—x'—M)*
TN M;_wex - N
11 & (x—x'—M)?
== €X -
2d Mzz_w P T
—Ymg | X=X INT | _ VT gp g i) (3.18)
2d 2d " 4d 2d

Here we have introduced the elliptic theta function © us-
ing notations of Ref. [34] (e.g., see Chap. 1, Sec. 8). With
the help of Eq. (3.18) we can rewrite Eq. (3.17) as follows:

2dG (x,x";N)=O(Xx —x ';it)—O(X +X ;i) . (3.19)

The last equation is strikingly similar to Eq. (3.15) (when
it is being inverse Laplace transformed) and we observe
that at least for the case of infinitely repulsive walls Eq.
(3.19) for plates can be obtained from that for the half-
space, Eq. (3.15), upon the formal replacement

1
—~ exp

The question now arises: Can the above replacement be
made for the arbitrary value of the parameter §, or, more
specifically, is it possible to obtain an analogous equation
for the parallel-plate case?

We would like now to provide an affirmative answer to
the above question. Begin with the observation that theta
function O(x,7) is the Green’s function for the quantum-
mechanical problem of quantization of a particle whose
motion is constrained to a circle [32,35] and plays for this
problem the same role as Gy(x,N) given by Eq. (3.16). In
complete analogy with Eq. (3.1), it is possible to consider
an analogous Schrodinger-like problem of the “motion”
of such a particle in the presence of a §-like potential lo-
cated somewhere on the circle. Fortunately, this problem

N (3.20)

Lok .
2d

J

G (x,x";5)= exp{ —V’s |x —x'—2Md |} +

Finally, unlike the usual free particle propagator, Eq.
(3.16), which is Green’s function of the “diffusion” equa-
tion (3.1) [with V(x)=0], the propagator O(x,7) is not
only the solution for the problem of a free particle mov-
ing on the circle but is also directly related to stationary
solution of the nonlinear Korteveg—de Vries (KdV) equa-
tion [34]. Development of path-integral methods which

Vs 4 !

was already considered [28] so that we provide only some
comments which are required to make our presentation
self-contained. For this purpose we consider Eq. (3.6)
once again. Noticing from Eq. (2.15) that
Golx;5)Gy(x",s)=(1/2Vs )Gy(|x|+|x’|;s) and taking
into account the integral representation,

1 @ —1(Vs +8,/2)

———=| dt o, (3.21)

Vs +84/2 fo ¢
we can rewrite Eq. (3.6) as follows:
G(x,x";5)=Gy(x —x';s)

8 pw, —t8,2
= [ Tdre” "G xl+ x|+ 159
(3.22)

The above presentation of Eq. (3.6) coincides with that
given in Ref. [28]. To see this, we need first to Laplace
transform Eq. (3.19) of Ref. [28] and then to make an
identification: 8,/2— —a (where a is the parameter used
in Ref. [28]). After this observation, the transition to the
circular problem is straightforward and solution could be
read off directly from Eq. (3.17) of Ref. [28].

Now, in view of this fact, and taking into account Egs.
(3.6), (3.7), (3.13), (3.15), (3.17), and (3.19), we can write,
in complete accord with Eq. (3.13), the following result
for the parallel-plate Green’s function:

Vs =8 —Vis|x +x'+2Md)} | . (3.23)

take into account this fact is outlined briefly in Ref. [36].
We are not going to use the above connection with KdV
in this work but we only would like to mention that the
above connection could be used to study fermi-bose
crossover [e.g., see discussion after Eq. (3.15)] for the case
of statistical mechanics problems which involve finite-
temperature one-dimensional quantum gases [36].
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The results obtained so far admit a generalization to
the case of semiflexible polymers to be considered in the
next section.

IV. PROPAGATORS FOR CHAINS
OF ARBITRARY FLEXIBILITY
IN THE PRESENCE
OF GEOMETRICAL CONSTRAINTS

As in the fully flexible case, we begin our discussion
with an equation of “motion.” Because we have this time
a Dirac propagator we obtain (in the absence of external
fields) the following result [e.g., see Eq. (2.110) of Ref.
(37]]:

(i3, —m)Gy(x —x")=i8™(x —x') . 4.1)

Here, as usual, 8, =7"3,, x={x,,x,,x3,N}, and G, is
the retarded Dirac Green’s function [because GO in Eqgs.
(3.1) and (3.2) is also retarded]. Equation (4.1) is written
in accord with Eq. (2.4) so that y* are Euclidean Dirac
matrices. The “relativistic”” analog of Eq. (3.1) can be
written now with the help of Eq. (4.1) as follows:

[i3, — A(x)—m]G(x,x'| A)=i8¥(x —x') .  (4.2)

We shall be concerned here only with potential scattering
so that A (x)=y°Ao(x). As in the fully flexible case, it is
convenient to rewrite Eq. (4.2) in the form of integral
equation. This can be accomplished as follows [37].
First, we multiply both sides of Eq. (4.2) by @O(x”—x)
and then integrate both sides over d 4x, so that we get

iGolx"—x")= [[d*x Gylx"—x")iB,— A(x)—m ]
X G(x,x'| 4)
= [d*x Golx"—x)[—id,— A(x)—m]
XG(x,x'|4), 4.3)

where the arrow indicates direction of the action of the
differential operator. If we notice that [37]

Golx —x')N—id, —m)=i8¥(x —x') , (4.4)
then we obtain
G(x,x'| 4)
=Gylx ‘—x’)—ifONded x"Go(x—x";N—1)
X A(x")G(x",x;7| 4) . 4.5)
Noticing that in the case of potential scattering the Eu-

clidean y° is [38]

yO=i L ol|=i? (4.6)

so that we obtain finally
G(x,x';N|V)=Gy(x—x',N)
N
_ d d IIG — II;N__ Vix"
J dr [d’x"Go(x—x TIV(x")
XG(x",x;7|V), 4.7

where V(x'"')=—$ A,(x) and, in view of Eq. (2.5), we are
interested only in TrG(x,x’;N|V). The above equation
formally looks like Eq. (3.2) but, unlike Eq. (3.2), it is a
matrix equation. This circumstance does not introduce
many additional complications, as we now demonstrate.

As in the “nonrelativistic” case, we begin with conver-
sion of Eq. (4.7) into its Laplace-transformed form,

G(x,x;s|V)=Go(x—x';s)
—fd x”@o(x—x”;s)
XV(x")Go(x",x;s|V) , (4.8)

where @O(X,s) is defined in Eq. (2.21). Now, as before,
consider only the one-dimensional case and let
V(x)=786(x), then Eq. (4.8) is converted into

@(x,x’;s)zéo(x —x';5)—8Gy(x ;996G (0,x";s) , 4.9)

where we have wused the same abbreviation
@(x,x’;s}V)zG(x,x’;s) as in the “‘nonrelativistic” case.
Unlike the “nonrelativistic” case, we have to establish
first the matrix nature of @(x,x’;s). To this purpose two
observations are helpful. First, in view of Egs. (2.5) and
(2.21) we have for §=0 the result

tr@(x,x';s)=-rf—e~“’%"i , (4.10)

2w

to be compared with Eq. (2.15). Second, the matrix na-
ture of G(x,x’;s) cannot be changed if in Eq. (4.9) we set
x =x'=0. Then, in view of Eq. (2.21) and taking into ac-
count the results of Ref. [27], we have to look for solution
for G(0,0;s) in the form

G=al+Pb+ysc+v,pd , 4.11)

where I is unit matrix and a,b,c,d are some yet unknown
functions of s. Substituting the right-hand side of Eq.
(4.11) into Eq. (4.9) and collecting the corresponding
terms near I,7,y; and y;¥, we obtain four algebraic
equations (to determine a, b, ¢, and d) by equating the
above terms to zero. Actual computations indicate, how-
ever, that the expressions obtained are cumbersome (espe-
cially in view of the expected subsequent inverse Laplace
transform performed on G). To simplify the situation,
we impose additional constraints on First, in the
“nonrelativistic” limit we expect that our G will smooth-
ly go into G (x,x';s) [e.g., see Eq. (3.4)]. Second, in the
rigid rod limit the potential should not affect the rigid
rod conformational properties. With these restrictions

we can try a much simpler ansatz:
G=al+7b . 4.12)

Substituting this ansatz into Eq. (4.9) and using Eq. (2.21)
produces

al +%b =El—[ml—s7’7—8(m1—77s Wial+9b)] . (@4.13)
0]

Using the identity 7 2=1 we obtain
a=n—-(1+8b) , (4.14a)
2w
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b=—-"(s +bma), (4.14b)
20
where n =(1—6s /20)~!. From here we get
m___1 (4.15)

=% 1-8s 20 °

This result could be substituted back into Eq. (4.14b) in
order to obtain b. The resulting expression for b, al-
though not too analytically cumbersome, is still too com-
plicated for use in analytical calculations which are
presented below.

The above calculations were presented only with the
purpose of demonstrating generality of the methods of
solving the matrix structure of G [e.g., see Egs. (4.9),
(4.11)]. To obtain explicit analytical results, we need to
make some  additional  approximations, e.g.,
$(0,0;s)=al. Then, using Eq. (4.9) and again taking into
account that #2=1 and that we are ultimately interested
only in traces [e.g., see Eq. (2.5)] of G, we obtain

a=L(m +das) ,
2w

which reproduces the result (4.15). Following the same
steps which lead us to Eq. (3.7) produces now

O, —wlxl—wlx'l] ,

(4.16)

G IR =_,'1 —olx—x'| _
(xx58)= 5, | 20+805

4.17)

where we have set 6— —§;. Repeating arguments which
lead to Eq. (3.13) we obtain our “relativistic”’ analog of
Eq. (3.13):

e—olx—xlp 2788 —otxtx

w+6s , W19

(’?(J\:,x’;s)=i
20

where, as before, §=5,/2

Explicit calculations below show that the above trun-
cated result for G produces meaningful physical results
for the whole range of permissible values of the inverse ri-
gidity parameter m. Extension of the above results to the
parallel-plate case is now straightforward and follows ex-
actly the same steps as in the ‘“nonrelativistic” problem.
This is permissible because in the “nonrelativistic” limit
(m— ) Eq. (4.18) produces the same results as Eq.
(3.13) and, therefore, by the requirements of complemen-
tarity and continuity, we arrive at the final result for
parallel plates:

@"(x,x';s)=% i exp{ —ol|x —x'—2Md|}

2 M=—w
0—8s
w+58s

Xexp{ —w|x +x'—2Md|} | .

4.19)

This concludes our discussion of semiflexible chain prop-
agators in the presence of geometrical constraints.
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V. CALCULATION
OF BASIC SINGLE-CHAIN PROPERTIES.
GENERAL CONSIDERATION

We begin with some simple illustrative calculations
which we shall need as a reference in more complicated
situations. Let us start with fully flexible chains. Using
Eq. (2.15), we would like to recalculate first (R?). We
have

—1| 1 pe 2 Vi
L Ve fo dx x“e” "**
(R pu= ~=2N (5.1
_ 1 © Y
L 1 - sx
Vs fo dxe

and the d-dimensional result merely involves multiplica-
tion by the dimension d. Similarly, if we use Eq. (4.10)
for semiflexible polymers, we obtain
1|1
2L —

Y

The last result was discussed earlier, e.g., see Eq. (2.10).
From this discussion it follows that if mN — o we obtain
(R?)=N/m while in the opposite limit, mN —0, we get
(R%?)=N?/3. This result is obtained if we set d =1 in
Eq. (2.10). This, however, is not permissible in general
because Eq. (2.5), which was used to obtain Eq. (2.10), in-
volves a three-dimensional angular averaging which pro-
duces the correct three-dimensional scattering function
S(k) as we have explained in Sec. II. At the same time,
the propagator given in Eq. (2.2) produces well-defined
one-dimensional results for arbitrary values of m. Be-
cause of negligible numerical discrepancy between Eqgs.
(2.9) and (2.11), it is technically more advantageous to use
the propagator given by Eq. (2.5). Moreover, if we recall
that the result 2N, given in Eq. (5.1), is written in terms
of the reduced variables [e.g., see the discussion after Eq.
(2.12)], then, by restoring them, we should have
(R2)=IN=2aN=(3/m)N [the last result is written
with account of Eq. (2.11)]. To reconcile Egs. (5.1) and
(5.2) we allow m to vary between O and 3 while multiply-
ing both sides of Eq. (5.2) by a factor of 3 [i.e., by d, ac-
cording to Eq. (2.10)].

Consider now the case of the rigid rod limit of Eq.
(4.18). In this limit ®=s and, if we keep x' on the surface
(i.e., the requirement x'=0 means that our chain is an-
chored at one of its ends), then calculation of {R?) pro-
duces

(R?),=32L_11/s%) o
LT LY 1/s%)

L—l

1 po _
—f dx x2e %
Y0

ifowdx e"“”‘l

(R? >bulk =

L—l

(5.2)

(5.3)

The L subscript denotes chain dimensions normal to the
surface [17]. Note that the chain dimensions exhibit no
dependence on §,. This result is in perfect agreement
with the requirements on G discussed in Sec. IV. The
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above agreement is not sufficient, however, in order to
prove that Eq. (4.18) is the correct “relativistic” exten-
sion of Eq. (3.13). We shall provide additional
justification of its correctness in this and subsequent sec-
tions.

We would like to note also that unlike the “nonrela-
tivistic” case for which (R?),/(R?),, showed depen-
dence upon the strength of the coupling constant 8 (see
below), in the “relativistic” limit such dependence disap-
pears entirely. This is in accord with our intuitive expec-
tation that a rigid rod anchored by one of its ends to the
wall will remain a rigid rod irrespective of the strength
and the sign of 8.

Let us define now the quantities of interest and calcu-
late them. For the half-space case we calculate the ratio
(R?), /{R?) for arbitrary values of m and 8. (R?),
is defined as

37! [fomdx x2G(x,x'=0;s) ]

(R?),= , (5.4)

L—-l

fowdx @(x,x'=0;s)]

while (R?),, is given by Eq. (2.10) (for d =3, and for
d =1 this result stays practically the same as we had al-
ready discussed). The more general case, x'#0, is also
readily considered [17], but it is not very illuminating (be-
cause of its analytical complexity) even in the “nonrela-
tivistic” case and, therefore, it will not be considered
here. The case x'70 is of physical interest, however, be-
cause it provides information about the surface profile.
We shall present these results in a separate publication.
The partition function is given by

Z(8,N)=L"! [fowdx Gix,x'=0;s) | , (5.5)

so that the average density of monomers {p,/(0)) ab-
sorbed at the wall could be defined according to Refs.
[17,39] as

—_9
=—35hZ(BN) . (5.6)

This quantity, however, is not too informative. Indeed,
let us recall that the microscopic monomer density at the
point r is given by [25]

pr(r)= fONdTiS(r—r(T)) (5.7)

so that, if the average monomer density is given by
(pp(r)) = fONdT(S(r—r(T))> , (5.8)
then for a single chain we can write [25]
["ar[ar [drG(r', 501G (5,1, N —1)
(pylr))y=-2
[dr [dr"G(r,5N)

’

(5.9)

where G stands for the full one-chain Green’s function
(relativistic or not). By construction, we obtain, using
Eq. (5.9),

Jdr{py(®)=N, (5.10)
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or, equivalently,

1 -
Nfdr(pM(r))~1 .

Now let p,,,, be the maximum value of {p,(r)) for all
permissible r’s, then, evidently (because p,, is non-
negative for all r’s) we obtain the inequality

(5.11)

s far>— [dr(py(0)=1. (5.12)
In the case of very strong absorption, |8| — o, we expect
that eventually all monomers belonging to a polymer
chain are going to be absorbed and, under these condi-
tions, we have an equality sign in Eq. (5.12). In the one-
dimensional approximation we have [dr— [ dx, and for
|8] — o0, we anticipate (py(x))=pp,,O(e—x) where
€—0" and O(x) is a step function. Then, we obtain
Pmax/N =1. This result should be compared with the re-
sult of Ref. [17] [Egs. (I1.49)], which produces
Pmax/N =2|8| (in our notations) and, whence, 2|8/ <1.
This restriction will be essential in our calculations
below. To this purpose, following Ref. [23], we define the
fraction of absorbed monomers j,, according to the
equation
ﬁM=%<pM(0)> (218/<1). (5.13)

It should be noted, however, that Eq. (5.6) which pro-
duces {py(0)) originates from the path integral, Eq.
(3.8), which is not the same thing as propagator Eq. (3.13).
Because of this observation, the validity of Eq. (5.6) is
rather limited in general and the results for the fraction
Pu should be considered only from the qualitative point
of view. This is supported by direct calculations present-
ed in Sec. VII, Eq. (7.47), and Fig. 1. On the other hand,
because the 8§ potential is itself an oversimplification of
the real short-range interaction potential, we expect that
the above difficulty is rather artificial in the sense that it
only could affect the actual magnitude of 6 which is con-
sidered as a parameter in our theory anyway.

A related quantity of interest is the fraction of ab-
sorbed monomers when both ends of our chain are an-
chored at the surface. In this case we can define p

s0_ 1 9

PM™ N 35
with the same restrictions on the strength of §. Analo-
gously, we can define similar quantities for the case of
parallel plates. In this case, in addition to the possibilities
just discussed, we could also consider the situation when
one chain end is anchored at one plane surface while the
other end is at another surface. For this case we get

InL " '[G(x =x"=0;5)] , (5.14)

Pl == oL N6y (x =0,x'=d;s)] ,
where the || subscript denotes the surface confined chain.
In addition to the above quantities, it is of interest to
calculate the mean force (pressure) between the plates
[18]. This is perhaps the most interesting property from
a physical standpoint. To this purpose, following the

(5.15)
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usual thermodynamic prescription, we define the free en-
ergy F. For example, for the case when only one end of
the chain is anchored at one of the plates we obtain

Fo=—kTinL ™" | [%ax e x'=0;0) | . 516
The pressure (force /) is obtained from the relation
L= o} (5.17)
Yoad '

Other situations are treated analogously, e.g., Eq. (5.15)
implies [B=(kT)"!]
B/”=%lnL_l[¢7@"(x =0,x'=;5)] , (5.18)

etc. This concludes our general discussion of quantities
to be calculated.

V1. CALCULATION OF PROPERTIES
OF FULLY FLEXIBLE POLYMERS

Although the case of fully flexible polymers has already
been discussed in the literature [17,18,26,39], we never-
theless would like to reproduce some of the known results
in order to compare these results with the more general
case of polymers of arbitrary flexibility to be considered
in the next section. It is convenient to subdivide this sec-
tion into subsections for the sake of clarity of our presen-
tation.

A. Calculations of the partition functions

The partition function was defined earlier by Eq. (5.5)
[where we have to use the “nonrelativistic” analog of
given by Eq. (3.13)]. Setting x'=0 in Eq. (3.13) and in-
tegrating over x we obtain (after inverse Laplace trans-
forming)

z,(5,N)=L""

d 1 ot
fodeVE 2

M=—w

[exp{ —Vs|x —2Md |} + Vs
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Z(8,N)=e¥Nerfc(5VN ) . 6.1)

The last result coincides with Eq. (II.19) of Ref. [17] (if
we set z'=0) as expected. This result admits an easy gen-
eralization [40] to variable dimension (Euclidean) sur-
faces and to fractal surfaces. In the integral equation for-
malism [e.g., see Eq. (3.6)] of the surface interacting poly-
mer problem it is sufficient to replace the Vs term by
fractional power of the s term which is related to the
fractal dimension d; of surface and the embedding space
dimension d.

For further reference, we would like to present the
asymptotic expressions for Z (8,N). If 8>0, the asymp-
totic formula

e n 6.2)
erfx oVt X —> o .
could be used in Eq. (6.1), producing [with help of the re-
lation erfc(x)=1—erf(x)] the final result

1
8V 7N

while if § <0 we can use the relation erf( —x)= —erf(x).
By combining Egs. (6.1) and (6.2) we now obtain

Z(8,N)=~= , |NV?| 5 w0, (6.3)

Z(8,N)=2¢%N, [6N1?| > oo . (6.4)

Equations (6.3) and (6.4) coincide with the corresponding
expressions in Ref. [17], as expected.

Although Dolan and Edwards [18] had considered the
parallel-plate case, in view of the discussion presented in
Secs. III and IV, we found it desirable to recalculate their
results. Consider first the same conditions as in Ref. [18],
i.e., we keep one end of the chain at x’=0. Then, using
Eqgs. (3.23) and (5.5) we obtain

-8
Vs +8

exp{ —V's |x +Md|) ” . (6.5)

Although it is possible in principle to obtain a closed form result for Z, (8, N), the actual computation shows [just like in
the case of Eq. (6.1)] that only the asymptotic results are physically comprehensible. In view of the potential impor-
tance of the above calculations for the problem of stabilization of colloids by polymers [13], it is instructive to consider
in detail only the case d —O0.

Noticing that both sums in Eq. (6.5) are actually the same, we can perform the inverse Laplace transform first. This
produces

2
_aeﬁlx +2M3|e6 Nerfc

® 7. | e—(x+2M?/aN
Z6N)= 3 [‘dx [———

sV +1x+2Md] H

u=. 1/-7;1_\; zm (6.6)
For N — «,d —0,8 >0 we can use Eq. (6.2) to obtain the following estimate:
+2Md| o —(x +2M12 /4N |x +2Md|
Sed1x+2Ma| 8N e |51/ N + |x ~ — +--- |, sN12 . 6.7
e e erfc N VN Vo 1 25N — o0 (6.7)
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By substituting this result back into Eq. (6.6) we obtain

—(x+2Md)? /4N

Z,(8,N)~—=— f dx |x +2Md| < =

—

28N >
(6.8)

This result coincides with that given by Dolan and Ed-
wards [18] [e.g., see their Eq. (4)] if their A is being re-
placed by our 1/8. To perform summation over M, con-
sider the following steps. First, notice that the combina-
tion

|x +2Md |e ~\x +2MAY /4N (6.9)

could be obtained as follows:

|x +2Md|e —(x +2Md)? /4N

=N d o ~(x +x'+2Md)? /4N

P (6.10)

x'=0

Second, in view of Egs. (6.7) and (6.10) it is useful to re-
call the identity [33] [e.g., see Eq. (5) on p. 275]

hed 2
E e*(x +x'+2Md)* /4N

\/1rN m(x +x')n

d

142 S cos e n'mN/

n=1

(6.11)

Z,(8,N)=1+2[5e® Nf dx

—18]2d
=1+2¢>N [1—e®4+2 sinh( lBld)
In the limit d —0 Eq. (6.17) reduces to

Z,(8,N)~2¢"N1+5|d)

e 1842 cosh(|8]x) 2 e ~812Md
M=1

—2[8|d

For d —0 we can keep only the one term in summation
over M. By combining Egs. (6.8), (6.10), and (6.11) we
then obtain

1 hd _ 2
L S x +2Md|e (x +2Md)* /4N
28NV TN M:E_ w | |

2T

=-——sin

8d?

mX

d

—mN/AY (6.12)

Finally, performing x integration in Eq. (6.9) with the
help of Eq. (6.13) we obtain

Z,(8,N)=—g-mN/a*

(6.13)
The last result is in agreement with Eq. (10) of Ref. [18]
(if only one term in the summation is being kept).

Consider now the case when 8 <0. Then, using Egs.
(6.5) and (6.6) we find

—(x+zMa>2/4N

Z,(8,N)= —
.

Efdx

M=—x

+2l8|e—|5|lx+2M3|652N

(6.14)

With the help of Eq. (6.11) the first term in Eq. (6.14) can
be transformed at once, thus working with the second
term we obtain finally

(6.15)

(6.16)

The last result is written for the case when the combination 82N is much bigger than one (which is always the case for

N— ).

Let us now consider a somewhat different situation when the ends of the polymer chain belong to different plates. In

this case, by using Egs. (3.23) we obtain

M=—o ‘/S
) o —[(d—2Md)?/4N)
=d —
Mzw ‘/7TN

For 8> 0 repeating all arguments of the previously con-
sidered case we arrive at the result which is similar to Eq.
(6.12), i.e.,

TE

d

—mN/d?

e , (6.18)

8:7

Vs +8

— 501 —2Md| ;8 Ner g {SVN +——|d2_%gl H .

)

(6.17)

f

where we have introduced the small parameter e —0"
which we shall take as zero at the end of the calculation.
Equation (6.18) looks very much like Eq. (6.13) and there-
fore will produce the same result for the force (pressure)
to be discussed shortly. Consider now the case 6 <O0.
Then, by analogy with Eqgs. (6.14) and (6.15) we obtain
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1+2(8[e¥ | 1012

Z,(5,N)=d

+2 cosh(|8|d)

e 1812d

For d —0 we obtain

Z,(8,N)=2e5M1—18/d) . (6.20)
B. Casimir forces (pressures)
and the adsorbed monomer fractions

Using the definitions given in Sec. V we now calculate
the forces. Using Egs. (5.16), (5.17), (6.13), and (6.16) we
obtain for 8 > 0 the following result:

0_ a 7N —1 , 27°N
Ind +— |=—+"—, (6.21)
b= d? d d?
while for § <0 we obtain as well
o_ 0 _ 8l
=—[Ind(1+18|d)]=————= . (6.22)
B£ ad[ﬂ | | ] +|8|3

As can be seen from both Egs. (6.23) and (6.26) in both
cases (8>0 and 8 <0) we obtain the repulsive force at
short distances. This repulsive force is being counterbal-
anced by the attractive van der Waals—type force poten-
tial given by [18] ¥ = — 4 /d * with A being some known
(Hamaker) constant. The counterbalance between the
repulsion, Eq. (6.21), and van der Waals attraction plays
a major role in the polymer stabilization of colloids.

Consider now the cases described by Egs. (6.18) and
(6.20). In the case of Eq. (6.18) we obtain the same result,
Eq. (6.21), when 6 > 0, while for & <0 we obtain

8]
1—|8|d
Evidently, this result is'valid only if d|8| <1. In view of
our estimate, Eq. (5.13), we expect |8/ <1. Let, for in-

stance, |8/ =1, then for d <<2 we obtain attraction while
for d >>2 use of Eqgs. (6.18) and (6.19) produces

Bf= ~—|23|

)
=2 1n(1—18|d)=—
B/ aaln(l 18d) (6.23)

(6.24)

i.e., attraction again. A change in the force sign has been
observed experimentally [41,42), in the form of oscilla-
tions. Such a sign reversal is apparently possible even at
infinite dilution, e.g., see Eq. (7.25) below.

Consider now calculations of monomer fractions. Us-
ing Egs. (5.6), (5.13), (6.3), and (6.4) we obtain

~ _ |(BN)TY, 8>0
Pu= 1a0s], 8<0. 625
Analogously, for the Dolan-Edwards case we have
(8N)~L 8>0
A01 _
1+|8|d N

2217

which practically coincides with the half-space results,
Eq. (6.28), as expected. In the other case which we had
considered we obtain

(6N)71, 8>0
6.27)

AN ~
Pumi 2l5|“‘l—‘1—+ d 1 §<0

8l N 1—|8|d N’
i.e., again the same results as in half-space.

C. Calculation of (R?), /(R?)pun

Using results of Secs. IIT and V and, in particular, us-
ing Eqgs. (3.13), (5.1), and (6.1), we obtain

|1 8
L‘L—z

Vs +8
In order to perform the inverse Laplace transform in
Eq. (6.31) some technical elements need to be introduced.
They are discussed in Appendix A. Here we provide only
the final result:

(R?),= (6.28)

Z(8 N)

2 N 2
Z(8,N)(R?) = ¢ e®N— re

)

382

For 8>0 and N— o we can use, as before, Eq. (6.2).
After straightforward algebra this gives

455N Lef(svN) .

s (6.29)

3 |1 11 e N | N8N
—— | cerfl8VN )=—— [1— -
[ as? | 8° 28 | /AN | sWaN
e—s’zv
B S— 6.30
26N ( )

Combining Egs. (6.29) and (6.30) and using Eq. (6.3) we
obtain

_4N 1
R? = 172
(R?),= N Zom — [BN'2 5| . (6.31)
Combining now Eqgs. (6.31) and (5.1) produces
(R*), 4N
=————=—==2, §>0 (6.32)
g (R >bu]k 2N

(R?),,x denotes the component of the mean square end-
to-end dimensions in a bulk solution along a particular
direction (e.g., perpendicular to surface). The result, Eq.
(6.32), coincides with that given in Ref. [17] [e.g., see Eq.
(I1.36)].

For the case 8§ <0, by combining Egs. (6.4) and (6.29)
we obtain after some algebra

2 N1 2 172 6.33
(R?),= 82 ZoN 5 |6N12| > oo . (6.33)
Combining Eq. (6.33) with Eq. (5.1) produces

<R2>l 1
R.=———"—=——, §<0, |6N12 . 3
< <R2>bu]k 82N l I‘_’°° (6 4)
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The last result is also in accord with that presented in
Ref. [17].

VII. CALCULATION OF PROPERTIES
OF SEMIFLEXIBLE POLYMERS

Using the results of the preceding section, it is con-
venient also to subdivide this section into subsections in
order to make connections with the fully flexible results.

A. Calculation of the partition function

By combining Egs. (4.18) and (5.5) and, in view of Eq.
(6.1), we write for the half-space case partition function

Z(8,N)=L! [fowdx G(x,x'=0;s)

|

=(a)+(b) . (7.1)

1

(1)2

__sb
o+sd

=mL !

The calculations of Eq. (7.1) are rather involved and
presented in Appendix B. Here we provide only the final
result:

e [cosG]mNcose

sin20+8%cos26

where in going from Eq. (B15) to (7.2) we have made a
change of integration variable: 8=w7—a and then set
again a=0.

The integral in the right-hand side of Eq. (7.2) can be
easily calculated numerically for arbitrary &, m, and N.
We would like, however, to make sure that the above re-
sult is in agreement with its “nonrelativistic” counterpart
[Egs. (6.3) and (6.4)]. To this purpose, use of asymptotic
methods is helpful. Noticing that the exponent in Eq.
(7.12) acquires its maximum value at §=0, we expand
terms under the integral in a Taylor series around 6=0.
Let 8 >0, so that we obtain

Z(6>0,M="["do (7.2)
mYo

1_a2/2+ . )e—(az/Z)mN
a?+8 1—a?/2+ -+ )
(7.3)

Z(8>0,M=2em ["dq!
T 0

Let 82mN /2=y?, so that the right-hand side of (7.3) be-
comes
172

VN2 -y ...
Y ZN [ "2 2e (1 )
” m ° 8+ =y (1=8/2)+ -
1/2
e™N mN
Yo erf |7 3 l . (74

Using Eq. (6.2) and noticing that Z(§,N) is always
defined up to normalization constant, we can choose this
constant %e ~mN and set mN =4N /a, a =2 (e.g., see Sec.
II) to reobtain Eq. (6.3). Consider now the opposite limit,
8 <0. To study this limit we have to go back to Eq. (B3)
and change the sign in front of the first term. Then, go-
ing through the same steps as before we obtain

- [cos@]mN,
Z(5<0’N)=2asinh(amN)—|—61-f deff_z__zgg_Sf_
™o sin“0+ 8“cos“0
~ e (1.5)

Vi1-8§*
where in going from the first line to the second we had
used Eq. (7.4), and a is defined after Eq. (B4). If we, as
before, extract the factor Je ~mN from the right-hand side
of Eq. (7.21), then we would obtain

Z(5<0,N)~ —tmN1/V 1= 1) (7.6)

V1-8?
Finally, expanding the square roots and choosing, as be-
fore, m =a /4, a=2, we reobtain the result Eq. (6.4) as
required.

In order to finish our discussion of the partition func-
tion for the half-space, several comments are in order.
First, in spite of the agreement for large m and N with
the nonrelativistic case, the rigid rod limit (m —0) is left
without discussion. To correct this deficiency, the fol-
lowing steps must be taken.

First, by going back to Eq. (7.1) and letting there
m =0, we obtain

Z(5,N)
m

1

=N1+s

, 6>0 (7.7

with analogous expression for 8 <0 [e.g., see Eq. (7.23)
below]. Second, in view of Eq. (7.5), let us consider again
Eq. (7.2). In the limit m —0 we obtain

Z(3,N) =§_1_V_fv cos*0
m 7 Yo sin’0+8%cos’
=N|——=1, 6>0. .
T+s 0 (7.8)

The last result is easily obtainable because the integral in
Eq. (7.8) can be calculated exactly. The case 6 <0 is
treated analogously, whence, indeed, Egs. (7.7) and (7.8)
are in complete agreement with each other. This means
that in order for Egs. (7.2) and (7.5) to be utilized for all
m’s, both sides of these equations should be divided by m.
This will be assumed in the rest of our calculations.

Second, in all our calculations performed so far we had
assumed that 8 is less than unity, in agreement with Eq.
(B4). But this requirement also emerges naturally from
our calculation of the partition function: if we set |8] > 1
in Eq. (B4) we would not be able to obtain the correct
“nonrelativistic” limit, Eq. (7.6), for the partition func-
tion.

Consider now the case of parallel plates. For the sake
of illustration, we shall consider in detail only the Dolan-
Edwards case [18]. The rest of the cases could be worked
out analogously (as is explained in Sec. VI). Using Eq.
(4.19) and results of Secs. V and VI we obtain

Z8N)=73 L j— 58

I=—o

f deie —olx—2ld|
0 w
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In order to analyze this expression further, the following
observation is helpful. Let ,=s and let ®=V'S where
S is the new Laplace variable which, for the time being, is
totally independent of s. We then introduce the trans-
form,

£(8)= fo""dee—NS/w) (7.10)
and its inverse,
-1 SN
£ M= fcdSe £(S) . (7.11)

By introducing the new Laplace variable we can repeat,
in principle, all the steps of our calculations presented in
Sec. VI [i.e., we use Egs. (6.5)-(6.13) for 6 >0 and, then,
Eqgs. (6.14)-(6.16) for § <0]. Using Eq. (6.13) (for §>0)
with 828, and NN and performing the direct Laplace
transform according to Eq. (7.10) gives

4 1

—_— (7.12)
osd s —m?+7*/d?

Z(8,N)=~L""

After performing the “usual” inverse Laplace transform
of Eq. (7.12) we find

4 1
Z (5,N)= Y7
I 8d m2—m?/d*
, 1172
X {cosh mz—% N]—l]. (7.13)
d
In the “nonrelativistic” limit (m — o ) we obtain
mN
Z,(8,N) = — & o ~(a N /m) (7.14)
8d m

In view of the discussion following Eq. (7.4), we conclude
that the result, Eq. (7.14), practically coincides with that
given by Eq. (6.13) as required. At the same time, in the
“relativistic” limit (m —0) we formally obtain

d 1—cos(\/1r2—t72m2%}

Z,8, M=% T

& 72—
(7.15)

This result should be used with some caution. Indeed, in
arriving at Eq. (7.12) we had repeated the asymptotic
analysis [e.g., see Eqgs. (6.6)-(6.13)] appropriate for the
nonrelativistic case, i.e., we essentially used the fact that
N — . Because in the present case instead of N we have
used WV it is not immediately clear that /' c0o. Because
in the present case we cannot just require N'— o, this
implies that the results such as Egs. (6.7) and (6.8) might
be invalid in the present case. To understand this situa-
tion better, we would like to consider the limiting case,
m =0, in Eq. (7.9) directly. For m =0 we have w=s
and, whence, we obtain

—salx -2/

fdx

Jlaxon—alx—21) . (.16

Because of the nature of our problem, we require in the
rigid rod limit N < d. Then, using Eq. (7.16) we arrive at

6(d—N )_ITS
which obviously coincides with Eq. (7.7) for §>0, N <d,
as required. If, instead, we set m =0 in Eq. (7.15) we ob-
tain

Z,(8,N)= (7.17)

43 aN

Z,(8,N)=—% |1—co (7.18)

This result is in obvious disagreement with the previous
one. We attribute this disagreement to the above-
mentioned failure of the asymptotic results. Equations
(7.13) and (7.15) could be used, however, beyond their
“nonrelativistic”’ limits with some caution. Indeed, the
experimental data [41] and some independent theoretical
calculations [42] indicate that the measured force be-
tween parallel plates tends to oscillate (see also discussion
below). This is possible only if the underlying potential
[e.g., Eq. (7.15)] has some oscillating component.

Consider now the case when § <0. Repeating the same
arguments as in the § >0 case we arrive at the analog of
Eq. (7.12) given by

_ 1+ds|8|
ZH(S,N)’:—'L 1 sz—_m] (7.19)
or
z,(8,N)= — |sinh(maN)+d|8|cosh(maN), (7.20)

where a was defined before Eq. (B5). In the “nonrela-

tivistic” limit the above result reduces to

a

z%sinh(maN) 1+ , (7.21)

which is in agreement with Eq. (6.16) in view of the dis-
cussion presented in Sec. V. In the “relativistic” limit we
obtain instead

N
(1+18))1—18)
Taking into account that in this limit N <d and using Eq.
(7.1) (for 8 <0) we obtain
1+8|— 18]
(1—18))(1+18])
~_N
113

whence, for 6 <0, Eq. (7.20) represents fairly good ap-
proximation in the whole range of m’s.

Z,(8,N)~a’N+d|8|= +d[8] . (7.22)

Z,(8, N\)=~N

+0(8%) , (7.23)

B. Calculation of forces and the monomer fractions

Calculation of forces proceeds now in the same way as
it was done for the “nonrelativistic’ case. In particular,
for > 0 using Egs. (7.13) and (7.15) we obtain
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) . ) . 252_ 2 5
é_ ~22d;n i dr:z s1nh[\/m~3 T (N{d)] (md > )
.14 d V'm?d = cosh[V m?d*—a%N/d)]— 724
b= 1, 2dm®> _ dm’ sin[V 7?—d *m3(N/d)) (md <) '

d m—d'm’ Vi2—3m? 1—cos[V m—d miN/d))
Because, as we had discussed in Sec. VII A, the above ex-
pressions are not exact and only, strictly speaking, valid 5. =——9 1nl2 h N
only in the nonrelativistic limit, we cannot study Eq. ™ a|5| n |2asinh(amN)
(7.24) in the limit m =0. But for m+0 we expect them (cosd]mN,
to be meaningful even away from the nonrelativistic lim- _ 18l f 40 _e " cosf (7.30)
it. In which case for d —0 we can further approximate T Y0 sin?0+8%o0s%0

the above results by

B/Oz%_ dm? sin(1rN/t7)~ ' (7.25)
d T 1—cos(wN/d)
Expanding sine and cosine terms in Eq. (7.25) we find
that the second term is nonsingular in the limit d —0 and
hence can be ignored. But for finite d its presence is im-
portant because it causes the force to oscillate.
Consider now the case 8 <0. Using Eq. (7.20) we ob-
tain as well

(m /a)|8|coth(maN)

B =—— ) (7.26)
4 1+d|8|(m /a)coth(maN)
For m finite and N — o this produces:
0 |8](m /a)

B/ 1+d|8|(m /a)

while for m —0 we obtain
82w
B/~ Bl —8%)N (7.28)

1+d|8|(1—8)N !

But from our discussion in Sec. VII A we know that in
this limit N <d and, thus, the above result could be
rewritten again as

1 |8](1—8%)

(7.29)
d 1+18](1—8%

BL Y~

’

i.e., irrespective of the sign of 8, we obtain repulsive force
~1/d. 1t is important to realize that the actual d depen-
dence of the above repulsive force is different in the flexi-
ble (“nonrelativistic”) case [e.g., see Egs. (6.21) and (6.22)]
as compared to the stiff (“relativistic”’) case. This
difference will certainly affect colloidal stabilization con-
ditions [13,18] and requires a detailed additional study to
be presented elsewhere.

Consider now the fraction of absorbed monomers for
the half-space problem. Evidently, in view of “nonrela-
tivistic” results presented in Sec. VI we can restrict our-
self by the case § <0 only [e.g., see Eq. (6.25)]. Using
Egs. (5.6), (5.13), and (7.5) we obtain

or

Py = ﬁ 2|8|a’sinh(amN )+ 2a*|8|mN cosh(amN)

1 f e [cosImNe o5
sin%0+ 8%cos?6
25 e [cos&]mNcos.’»e
+— | df R (7.31)
T f 0 [sin?0+8%cos?6)?

where a=1/ \/1—82, as before, and v equals the argu-
ment of the In term in Eq. (7.30). The results of our cal-
culations of p,, are presented in Fig. 1. As we had dis-
cussed already, e.g., see discussion after Eq. (5.13), the re-
sults for p,, have only qualitative value.

C. Calculation of {R?),/{R?)y.u

By analogy with Eq. (6.28) and taking into account
Egs. (4.18) and (5.3) we write

_6
Z(8,N)

1
0)4

8s

L7! —
o+ 8s

(R?),=

} . (71.32)

Consider first the “ultrarelativistic’’ case: m =0. In this
limit ®=s and we obtain (8 > 0)

6 N?
T'(4)Z(3,N) 1+6

where we used the fact that Z(8,N) is given by Eq. (7.7).
The result just obtained coincides with the one already
obtained, Eq. (5.3), and is reproduced here for the
reader’s convenience. Using Eqgs. (2.11) and (7.33) we ob-
tain

(R?),= =N?, (7.33)

(R?),
R,=———=1 (7.34)
<R >bulk

to be compared with the nonrelativistic limit, Eq. (6.32).
We again emphasize that (R?),,, corresponds only to
the projection of the mean square chain dimensions along
a particular direction. Evidently, Eq. (7.34) will remain
the same for 8 <0 in the limit m=0.

Consider now the more interesting case of arbitrary m.
We shall treat now the § >0 and 8 <0 cases simultane-
ously by writing [e.g., see Eq. (7.32)]
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1 s =1 8 (o F 8s)
o 0185 | ot o oP—8%2
_— bs 1 1

X w*—8%?)

(7.35)

0 0?—8%?

=(i)+(ii) .
By arriving at the last line of Eq. (7.35), we notice that
the difference between the §>0 and 6 <0 cases is only
reflected in the first term (i) where the upper sign corre-

sponds to 8 >0. The inverse Laplace inversion of (ii) pro-
duces after some algebra

L“[(ii)]=8—2:n-; . (7.36)

-;—sinh(amN )—sinh(mN)

As for (i), it is convenient to rewrite it first into the form

. 1 s 1 1
=j: —_—

@ m28| (s2—m>V? | s2—m? s*—a’m?
=(a)+(b) . (7.37)

Here the sign “+’ corresponds to 6§ >0. Noticing that

s 1 1
=% , 7.38
W= [(s—m)m (s +m)”2 l 7.38
we obtain
L [(a)]—:t-—zlo(mN), (7.39)
m*8

where I,(mN) is the modified Bessel function. As for (b),
it is sufficient to compare it with (i) defined by Eq. (B2).
Because of such comparison, we can write the final La-
place inverted result without delay,

L7 (b)]=7F sin(amN)

1
m38a
e [cos@]mNcose
sin20+8%cos0

Collecting all terms together we obtain

1 1 pn

N PR
a‘rm>d ™o

(7.40)

1 _ 1
S Z(8,N(R?),= o

%sinh(amN )—sinh(mN)

+

7 sinh(amN)

m3a

cosB]mNcose

1 1 fﬂ el
T a®m3 w0 sin%0+8%os?0
(7.41)

where Z (6,N) is given by Eq. (7.2) for §>0 and by Eq.
(7.5) for  <0. To check the correctness of the above re-
sults we need to study them in two limits m —0 and m
finite but N— oco. The limit m —0 is nontrivial and re-
quires rather lengthy calculations which we have done
but we omit here in view of Figs. 2 and 3 presented in this
paper. The “nonrelativistic” limit is easier to study and
therefore we provide here some essential details. Analyz-

-

0.8 m

FIG. 2. Expansion factor R ., as a function of an inverse rigi-
dity m for polymer chains of various lengths N, 6> 0.

ing the procedure which has led us to Egs. (7.4) and (7.5)
we obtain asymptotically

—1_ n 1 eamN _ emN
s 2N R =5 5 1% 2
N emN eamN
+
m? V2rmN = 2am?38*
mN N 172
i—ﬁ———erf o mX .
a’m 8V TmN 2

(7.42)

Let now 8> 0, then Eq. (7.4) should be used (divided by a
factor of m) for Z(8,N) while in the right-hand side of
Eq. (7.42) the dominant term is

N e™N
% VammN
This produces for {R?), the following result:
N6
mv2 '’
To get rid of the undesired factor of (V'2)™!, we need to

go back to Eq. (7.4) and to consider once again the com-
bination

(R?),= (7.43)

o.sf\\
A, 0.68\
< \
n \\ AN NI
0.4
5 S~
:‘| G
W NG N -~
0.213\ ~ ~ - -
\\\ 500 \\_ ~ —_— —
< -_—— e —_—— .
e e o T e e e
1000 " ~~=oS TN, —_—
0.2 0.4 0.6 0.8 1 1.2 1.4

FIG. 3. Contraction factor R . as a function of an inverse ri-
gidity m for polymer chains of various lengths ¥, § <0.
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172 1/2

2

mN

1
2 ™ 0

[mN
T

The above result, when used in Egs. (7.4) and (7.42), pro-
duces the desired answer:

N .

(R?),= - (7.45)

Finally, using Eq. (2.10), we obtain
(R )y

>

which is in agreement with Eq. (6.32).

Consider now the case § <0. Using Eq. (7.41), the
dominant term in the right-hand side of Eq. (7.41) is go-
ing to be (a>1)

1 eamN

?m’ «a
Using this result and Eq. (7.5) (divided by m, as before)
we obtain

(R2>l=—8—5—6—2(1—82) (7.46)
m
and, whence,
(R?)
R_= L2 (g, (7.47)

B <R2>bulk B Ssz

This result is in complete agreement with Eq. (6.34) if we
choose 2(1—8%)=m. Taking into account that |8/ <1,
we obtain m =3, which agrees with results for m [e.g.,
see the discussion before Eq. (5.3)].

VIII. DISCUSSION

The results obtained above do not exhaust the existing
possibilities for surface interacting polymers. For exam-
ple, Rubin [43] had considered adsorbtion of fully flexible
polymers onto rods while Taniguchi, Kawakatsu, and
Kawasaki [44] had considered an adsorbtion of the fully
flexible polymers into spheres, etc. In addition, when the
surfaces are flexible and fluctuating, study of polymer ab-
sorbtion and forces between surfaces becomes technically
complicated [45,46]. Nevertheless, the methods
developed in this work will enable the study of the above
problems through a straightforward extension of results
already obtained for fully flexible chain results.

The single-chain results discussed in our work are use-
ful only in the limiting case of low polymer concentra-
tions. The effects of higher polymer concentrations as
well as the excluded volume in the case of fully flexible
polymers can be accounted for by using the integral equa-
tion methods [13]. Thus these methods admit straight-

fv\/md

1/2
z_i 2 © —x2_[* 52
7 | mN [fo dxe TT‘/mN/dee

172
___,._1_._ ._2__ \/?r:; (7.44)
Now 27 | mN V2rmN '

forward extension to the case of semiflexible polymers by
using the methods presented in our paper.

It is important to realize that the excluded volume and
the rigidity effects actually play very similar roles [8], i.e.,
it is always possible to mimic the chain extension caused
by the excluded volume effects by considering
semiflexible chain (without excluded volume) with care-
fully chosen inverse rigidity m and, because in concen-
trated solutions the excluded volume effects become
screened [1], our single-chain results could actually be
used with some caution in a wider range of polymer con-
centrations (if, of course, we know the effective rigidity of
a single chain which could be determined, for example,
variationally [47]).

The fact that the excluded volume plays a role similar
to rigidity of the chain could also be seen directly by com-
paring the results depicted in our Fig. 2 with that depict-
ed in Fig. 1 of Ref. [22]. At the same time, the results de-
picted in Fig. 3 can be interpreted also in terms of un-
binding transition, e.g., see Fig. 1 of Ref. [48]. Such an
interpretation might be especially useful for description
of unbinding transitions in simplified interface models de-
scribed in Refs. [49,50].

APPENDIX A:
CALCULATIONS RELATED TO EQ. (6.28)

In order to Laplace invert the expression given in Eq.
(6.28) we use the following chain of identities:

1 1 Vs-3
s2 Vs 48 s¥s—8)
1 1 s

:sl/z S—S_sz(s—sz):(a)_(b) . (A1

In the case of (a) we notice that

1 1 © 172, —
= dx x'%e ™ . (A2)
i
This produces
L_ll € P ]:esl(N—X), N>x . (A3)
g —

Combining Eqgs. (A2) and (A3) we get



(A4)

As for (b), we obtain

1N

1 &2
5 5 +—e

(b)=— =

(AS)

APPENDIX B:
CALCULATIONS RELATED TO EQ. (7.1)

We have

(a)=L ~![m /w?]=sinhmN , (B1)

|

m8?

1
w+8s

mBs
o?

(b)=—L""!

s 1 52

0*—8%2 @

| =

=—mbd

(¥}

0*—8%2 w
=(i)+(i) . (B2)
For (ii) we have in addition

m&%s? l

(i)=L"" 0¥ w?—8%?)

- _ 1
=—L 1= |+mL™! m (B3)

The first term in Eq. (B4) cancels with (a) while for the
second term we write

1 1
s+M?s+am

-1 -1

1 1
s+M?*s—am

—aq2
= _—MN

2M?
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(iii)=mL !

1
—_— . (B4)
sH1—8%)—m? ]

Noticing that for §=1 we get (iii)=0, we shall consider
only the case § <1 below. This is in accord with our ear-
lier result, Eq. (5.13). Introduce a?=1/(1—58%), then we
obtain

1

s2_m2a2

ma®L ! =asinh(maN) . (B5)

Going now back to (i), Eq. (B2), we find

2

0?—8%? s?—a*m? 2 |s+am s—am
(B6)
Noticing also that
1_ 1
o Vsi—m?
— 1
Vis—m)(s+m)
() x12(1=x)"172
= B7
r(l)‘”f [(1—=x)s +m)+x(s—m)] ®7

and introducing notations
(1—x)s+m)+x(s—m)=s+m(1—2x)=s +M?,

we are ready to consider the following inverse Laplace
transforms:

-1 1 1 - -1 e_MzN
s+M? stam M?*Fam
(———l)ze:FaMN_ (B8)
Tam —M

This produces

(M2—am)e toemN

By combining Eq. (B2) [for (i)] with Egs. (B6)-(B9) we
obtain

2
(j)=—22 5 fldxx_l/z(l—x)_”2
m Jo

X[ —e M*NM24+M2cosh(amN)
1

(MZ)Z_aZmZ :

—am sinh(amN)]

(B10)

(M) —a’m?

2 —amN
l+ '(M +am)e (B9)

(M2)2_a2m2 (M2)2_a2m2

r

Noticing that M2=m(1—2x), the above result can be
rewritten further as

0 pr1
u%ﬁha

l/2(l_x) 172 [
a ¥(1—2x)?

—(I—Zx)NM( 1 _2x)

+(1—2x)cosh(amN)

—asinh(amN)] . (Bl1l1)



2224 KHOLODENKO, BEARDEN, AND DOUGLAS 49

Now let x =y? and then let y =sin#; after these substitu-
tions we obtain

e —[cosG]mNcosG
(j)
[cosO]cosh(amN)
(jj)
__ asinh(amN) ]
i '

S pr 1
=2 ["a6
W 7Tf0 1—a %cos’0

(B12)

Noticing that [for (jjj)]

T 1 o
do0————=— (B13)
fO 1—a’cos’@ &
while [for (jj)]
[Td g— %0 _, (B14)
0 1—a %cos?
we obtain
o . & 7, e [00ImNeos0
(i1)= —a sinh(amN) - fo dé 20+ 57005’ |
(B15)

The first term in Eq. (B15) cancels against that given in
Eq. (B5) so that we are left with the result given in the
main text as Eq. (7.2).
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